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Abstract. Semantic segmentation is a per-pixel class labeling problem,
a method to assign a class label from a set of classes to each pixel on an
image. Recent works have shown great progress using RGB images. How-
ever, indoor environments is still a challenging problem for the state-of-
the-art algorithms due to the high variability of the scenarios. Addition-
ally, semantic segmentation architectures based on Convolutional Neural
Networks have reported to be vulnerable to adversarial attacks. However,
elements of these architectures are similar to hand-crafted features and
pipelines used in computer vision. In this paper, we explore the use of
local image features by making an analysis and proposing a combination
of feature detectors to make a robust classification of these features. This
approach is a step of a top-down RGBD semantic segmentation method.
Experiments on indoor environments show that the mean classification
accuracy of feature descriptors can be improved by up to 3.3% with
respect to the performance of a single feature detector. Also, using a
balanced dataset an applying a cross-validation technique could improve
up to 5.5% of the average of mean accuracy, obtaining better performance
than just applying a single feature matching algorithm.

Keywords: local image features, feature detectors, feature descriptor,
semantic segmentation.

1 Introduction

Semantic segmentation is a per-pixel class labeling problem, a method to assign a
class label from a set of classes to each pixel on a RGB and RGBD (RGB+Depth)
image [8]. Computer vision has tackled semantic segmentation on both RGB and
RGBD perspectives. RGBD approaches introduced RGBD cameras to assist
indoor scene segmentation by increasing the capabilities of getting the shape
and spatial information from a depth image [10,11,26,27]. Deep learning has
achieved very good results and RGB approaches for semantic segmentation
have converged to encoder-decoder architectures based on Convolutional Neural
Networks (CNN’s) [3,7,17,18]. However, when they have been tested using indoor
environments, they have experienced a lack of performance. For example, Badri-
narayanan et al. [3] proposed the first encoder-decoder architecture for semantic
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segmentation. They reported for an outdoor experiment using Camvid dataset
60.10% of mean Intersection-over-Union (mIoU), an evaluation metric that gives
the similarity between the predicted region and the ground-truth. Meanwhile, for
indoor environments using the SUN RGBD dataset, they reported 31.84% mIoU.
This drop in performance could be explained by the high variability of indoor
scenarios. Furthermore, adversarial attacks is a problem recently reported that
affect CNN’s and encoder-decoder architectures [2,20,31]. Adversarial attacks
can be generated through a variety of forms, including making small modifica-
tions to the input pixels, using spatial transformations, or by a simple guess and
check to find misclassified images.

Hand-crafted representations such as local image features have been widely
used in a large variety of computer vision tasks. In specific, they were used before
deep learning approaches emerged with excellent results on image classification
[23,28]. However, CNN’s have outperformed the results made by local image
features. Notably local image features and pipelines used in computer vision can
be seen as corresponding to layers of a standard CNN. Also, it has been reported
in [26] the use of local image feature for an indoor scene segmentation approach
using RGBD information. So, the question we address in this paper is whether
it is possible to improve the performance of local image features by combining
feature detectors and after answering this question build a top-down semantic
segmentation method using RGBD images.

2 Local Image Feature Approach

Figure 1 presents an initial proposal of a top-down RGBD semantic segmen-
tation method. Within this proposal, the focus of this work is on the local
image feature approach (see Figure 1 yellow rounded box). Local image features
are used due to its low computational cost, and robustness to changes on the
scale, rotation, viewpoint change, blur and in some cases to lighting conditions.
These features are used to influence the perception of the top-down process,
recognizing and localizing points over the image. This approach is followed by a
region growing segmentation process (currently under development) on the depth
image, where the object shapes would be extracted to complete the semantic
segmentation method.

Therefore, the contribution of this paper is the analysis of local image features
and how a combination of feature detectors can improve the classification accu-
racy of features descriptors (see Figure 1 yellow rounded box). Local image fea-
tures can be seen as a two-part process: detection and description (see Figure 1).
Feature detection refers to the process of selecting regions or interest points in
an image that have unique content, such as edges, corners, ridges or blobs [25].
These interest points can be used for further processing. Feature description
involves computing a descriptor, which is typically done on regions centered
around the feature detector. A descriptor is a compact vector representation of
a local pixel neighborhood around an interest point. A histogram of the image
gradients of a region centered on a point is an example of a descriptor. Thus, this
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Fig. 1. The semantic segmentation method (red rectangle box), starts by using
the local image feature approach by computing the feature detectors on the
RGB image and constructing a feature descriptor on each one of the detectors.
Afterwards, a classifier predicts a class of the local image features, which in turn
becomes the input for the segmentation process (not reported in this paper).

work made an analysis focused on the combinations of feature detectors (e.g.,
regions, points, or corners) which are supposed to have a strong response to a
series of filters in either spatial or frequency domains.

2.1 Feature Detectors

Two research works were followed to check their analysis of the current most
common feature detectors [21,25]. The first work compares the invariance of fea-
ture detectors to the rotation, scale, and affine transformations, as well as some
qualities such as repeatability, localization, robustness, and efficiency (see [25]
to check such comparison). In terms of invariance, Maximally Stable Extremal
Regions (MSER) [6], and Salient Regions (SR) [1], are invariant to all image
transformations. The most common used Scale-Invariant Feature Transform
(SIFT) [19], Speeded-Up Robust Features (SURF) [4], and Binary Robust In-
variant Scalable Keypoints (BRISK) [16] detectors are invariant to rotation and
scale. Corner detectors like Harris [13] and Features from Accelerated Segment
Test (FAST) [24], are only invariant to rotation. In terms of qualities, MSER has
a good performance on all the qualities mentioned above as well as the Harris
corner detector. SIFT has a good performance on robustness and localization,
while SURF has a good performance on efficiency and localization. Even though
SR is invariant to all the transformations, it has poor performance on all the
mentioned qualities.

Runtime performance is also taken into consideration. Mikolajczyk et al. [21]
analyzed runtime performance and the number of regions for a test image of
size 800x600 pixels. The shortest runtime was 0.66 seconds obtained by MSER.
The longest was SR with 2013.89 seconds. Harris-Affine achieved the second
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fastest time with 1.43 seconds. Hessian-Affine have the third fastest run time
with 2.73 seconds. Hence, based on the results reviewed above, we decided to
use the following four feature detectors:

– Maximally Stable Extremal Region (MSER) [6], extracts from an
image a number of co-variant regions, called MSERs. An MSER is a stable
connected component of some sets of gray-level pixels of the image.

– Harris Corner [13], finds corner points using the Harris-Stephens algorithm
which considers the differential of the corner score with respect to direction
directly.

– Features from Accelerated Segment Test (FAST) [24], is a corner
detection method that uses a circle of 16 pixels (a Bresenham circle of radius
3), to classify whether a candidate point is actually a corner.

– Binary Robust Invariant Scalable Keypoints (BRISK) [16], is a novel
scale-space FAST-based detector in combination with a bit-string descriptor
obtained from intensity comparisons retrieved by dedicated sampling of each
keypoint neighborhood.

2.2 Feature Descriptors

A descriptor is a compact vector representation of a local pixel neighborhood
around an interest point or a region. This vector can be constructed using a
feature detector as an input to build a representation of the surrounding pixels.
Speeded Up Robust Features (SURF) [4] has a detector and a descriptor part.
This paper uses the SURF descriptor in a combination of the feature detectors
listed above1. SURF descriptor is extracted constructing a square region centered
around the interest point (given by a feature detector), and oriented along
an assigned orientation. The size of this region is 20s, where s is the scale
in which the interest point was found from a scale-space extrema detection.
The orientation is computed with a sliding orientation window that detects the
dominant orientation of a Gaussian weighted Haar wavelet.

The following procedure describes how the SURF descriptor is calculated
from each one of the four detectors used in this work. A SURF descriptor
is computed from MSER using a circle representing the feature with an area
proportional to the MSER ellipse area. This area is needed to approximate a scale
to construct the descriptor and is computed in terms of the ellipse’s axes. The
scale value must be greater or equal to 1.6 as is needed by the SURF descriptor
[5]. Therefore, the MSER ellipse area is saturated to 1.6. The SURF descriptor
orientation uses the MSER orientation directly. Since Harris, FAST and BRISK,
generate interest points rather than regions, the minimum scale value of 1.6 was
used to construct the square region on which the descriptor would be extracted.
Since these interest points do not have an orientation assigned, thus the upright
orientation was chosen.

1 The SURF descriptor was compared against Binary Robust Invariant Scalable
Keypoint (BRISK), Fast Retina Keypoint and KAZE descriptors in an experiment
not reported in this paper. SURF descriptor showed the best results.
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2.3 Classification Algorithms

Classification algorithms are needed to predict a class for each feature descriptor
on the local image feature approach. In these experiments four different machine
learning classifiers were used and are described next:

– Probabilistic Neural Network (PNN): Is a two-layer network where the
first layer computes the distance from the input vector to the training vectors
of each class and the second layer produces an output vector of probabilities
with the sums of the contributions of each class. The maximum value of
these probabilities is chosen as the predicted class. The Euclidean distance
computed from the center point of the training vectors is approximated
applying a radial basis function using a sigma value.

– Support Vector Machines (SVM): Builds a model that assigns new
examples to one category or another. In this paper, a multi-class model for
SVM is used that utilizes an Error-Correcting Output Codes (ECOC) model.
ECOC reduces the problem of classification with three or more classes to a
set of binary classifiers. Additionally, it uses K(K–1)/2 binary SVM models
using one versus one coding design, where K is the number of classes.

– Deep Neural Networks (DNN): Is an artificial neural network of multiple
processing layers that learns representations of data with multiple levels of
abstraction.

– Feed-Forward Neural Network (FFNN): Is an artificial neural network
composed typically of three layers: an input layer, a hidden layer and an
output layer. A specific implementation of this algorithm is used for classi-
fication of local image features for semantic segmentation in [26]. It is used
as the appearance model for the unary potential function of a Conditional
Random Field (CRF) algorithm.

2.4 Dataset

A state-of-the-art dataset was chosen to test the combination of feature detectors
and the classification algorithms. The SUN RGBD dataset [29] from Princeton
University was selected. This dataset contains 10,335 RGBD images of indoor
scenarios such as bedroom, furniture store, office, among others. Four different
sensors (Intel RealSense, Microsoft Kinect v1 and v2, and Asus Xtion), were
used to capture the images. The dataset contains annotations in 2D and 3D for
both, objects and rooms. The dataset is composed of the NYU depth v2 [27],
Berkeley B3DO [14], and SUN3D [30] datasets. Also, it provides benchmarks
on six important tasks: Scene categorization, semantic segmentation, object
detection, object orientation, and room layout estimation.

Furthermore, to complement the experiment of local image features and check
the behaviour of the classification algorithms to balanced data. We constructed
a balanced set of images from the RGBD Object Dataset [15]. This dataset con-
tains 300 common everyday objects from multiple view angles, totaling 250,000
RGBD images organized into 51 categories. The objects are commonly found
in indoor environments, such as homes and offices. As each object category has
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different numbers of objects, we selected specific categories and build a balanced
dataset.

3 Experiments and Results

The main idea presented in this paper is the combination of feature detectors to
improve the classification accuracy of feature descriptors. An example is shown
in Figure 2, where it is observed a combination of two feature detectors, MSER
and FAST, on a test image. Different feature detectors are observed on the same
object, e.g. the tripod which contains detectors of both types. This could allow
having different starting points for a segmentation algorithm.

MSER FAST MSER+FAST

Fig. 2. Example showing the combination of two feature detectors (MSER and
FAST) using the “cameraman” image.

In terms of the dataset, SUN RGBD provides two ground truth sets for all
images, one using 37 classes and another one using 6,590 classes. Handa et al.
[12] proposed the ground truth of semantic segmentation for a variety of datasets
to standardize benchmarks between datasets. They proposed 13 classes for the
SUN RGBD dataset (see Table 1). Rather than using the classes as defined by
the SUN RGBD dataset, we followed the classes defined by Handa et al. For our
experiments we manually selected a subset of 200 RGBD images for training and
93 images for testing from the SUN RGBD dataset (see Figure 1). All selected
images belong to an office scenario.

Table 1. 13 classes defined by Handa et al. for the SUN RGBD dataset
scenarios [12].

Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Name Bed Books Ceiling Chair Floor Furniture Objects Picture Sofa Table TV Wall Window

40

Gerardo Ibarra-Vázquez, Cesar A. Puente-Montejano, José I. Nuñez-Varela

Research in Computing Science 148(11), 2019 ISSN 1870-4069



For our experiments, we used a computer with an Intel Xeon E5-1620 pro-
cessor and 48GB of RAM. The hyperparameters for the classification algorithms
were set as follows:

– PNN: σ = 0.025.
– SVM: One vs one coding, linear kernel function, kernel scale of 1, polynomial

order of 3, and iterations limit of 1 × 106.
– DNN: An input layer, 3 fully connected layers of 1000, 500, 50 neurons and

a softmax output layer. It was trained using stochastic gradient descent with
momentum, an initial learning rate of 0.01, a maximum of 20 epochs and
mini-batch size of 250.

– FFNN: An input layer, a fully connected layer of 1000 neurons and a
softmax output layer. It was trained using stochastic gradient descent with
momentum, initial learning rate of 0.01, maximum epochs of 20, and mini
batch size of 250.

Table 2. List of feature detectors combinations and the mean accuracy over the
13 classes for each classification algorithm.

Experiment Mean accuracy

Feature detectors combinations Descriptor PNN SVM DNN FFNN

MSER SURF 21.5% 28.5% 27.8% 26.7%

MSER + Harris SURF 21.5% 30.2% 29.4% 28.7%

MSER + FAST SURF 21.3% 30.6% 29.4% 29.9%

MSER + BRISK SURF NA 30.4% 30.2% 28.6%

MSER + Harris + FAST + BRISK SURF NA 30.6% 30.1% 30.0%

Experiment results and the list of feature detector combinations are shown
on Table 2. It is seen that there was no improvement using the PNN algorithm
with any feature detector combinations. The mean accuracy obtained over the
13 classes is 21.5% for MSER and MSER + Harris combinations. Whereas
for the MSER + FAST combination the mean accuracy is 21.3%. It should
be mentioned that it was not possible to process MSER + BRISK and the
combination of all detectors because the training data was too large and it
was not possible to process using the PNN algorithm. On the other hand,
SVM shows an improvement for all feature detectors combinations. MSER +
Harris obtained 30.2% of mean accuracy, MSER + BRISK 30.4%, MSER +
FAST and the combination of all feature detectors obtained 30.6%. This means
an improvement of up to 2.1% from 28.5% of the MSER detector. DNN also
obtained an improvement up to 2.4%, and its best result was 30.2% using MSER
+ BRISK. MSER + Harris + FAST + BRISK combination obtained 30.1%.
MSER + Harris and MSER + FAST improved to 29.4% from the 27.8% of
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the MSER detector. For the case of FFNN, the result for the combinations was
the following: MSER + Harris 28.7%, MSER + BRISK 28.6%, MSER + FAST
29.9% and MSER + Harris + FAST + BRISK 30.0% of mean accuracy. The
best result of FFNN showed an improvement of 3.3% from the obtained 26.7%
of the MSER detector.

Fig. 3. Histogram of the number of appearances of classes in the training data.

In general, all algorithms presented a low performance. Thus, further analysis
of the dataset showed that the training data was unbalanced which it causes
the low accuracy of the four classification algorithms. Figure 3 presents the
histogram of classes for the selected scenario (office), where the objects with
most appearances in the training images are chair, floor, wall and table. However,
other classes are not as recurrent, hence they are more difficult to classify.

Therefore, we defined a dataset for the second experiment choosing five object
categories (food bag, food box, notebook, kleenex, and instant noodles) from the
RGB-D Object Dataset. From these categories, five objects were selected and
40 images were taken from each object. A total of 1000 images were obtained
which were split into five groups of 200 images each (40 images from each
object category). We applied a cross-validation technique with four groups for
training and one for testing. The same experiment settings listed above were
used for this experiment. Additionally, we made a comparison with a feature
matching algorithm[22] because we wanted to compare with a traditional local
image features technique for object recognition. It consists of a priority search
on hierarchical k-means trees for approximate nearest neighbor search in high-
dimensional spaces. It is an efficient method for clustering and matching features
in large datasets.

Table 3 shows the results for the experiment using a balanced dataset. It is
shown that combining feature detectors can significantly increase the average
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value of the mean classification accuracy of feature descriptors in some cases up
to 5.5% (MSER+BRISK and FFNN case). Also, the best configuration for this
experiment was MSER+BRISK detectors obtaining better performance with all
the algorithms. It improved for PNN 3.1% of the average value of the mean
acurracy, SVM increased 3.04% using the same combination, and DNN 2.03%.
The feature matching was the algorithm with the lowest performance. The low
performance can be explained by the inability of the algorithm to generalize a
class from the feature descriptors. It only focuses on find similarities with the
training descriptors. Just in one case the computer could not process the test
dataset because it got out of memory, it was using PNN and the sum of all the
detectors.

Table 3. List of feature detectors combinations, the average value and the
standard deviation using the cross-validation technique of the mean accuracy
over the five classes for each classification algorithm.

Experiment Results

Feature detectors combinations Descriptor
PNN SVM DNN FFNN MATCH

avg std avg avg avg std avg std avg std

MSER SURF 41.80% 7.47% 40.94% 7.42% 38.74% 4.80% 38.96% 7.41% 7.40% 0.9%

MSER + Harris SURF 34.19% 6.57% 33.61% 6.76% 32.61% 6.77% 33.23% 5.61% 8.64% 1.33%

MSER + FAST SURF 38.40% 6.45% 39.74% 9.10% 37.56% 8.38% 39.27% 8.56% 7.44% 1.20%

MSER + BRISK SURF 44.94% 5.40% 43.98% 7.77% 40.77% 5.86% 44.46% 7.93% 5.11% 0.63%

MSER + Harris + FAST + BRISK SURF NA NA 37.68% 8.52% 37.44% 6.81% 38.96% 8.06% 6.99% 1.11%

Table 4. Time results for each algorithm on the training and testing stages.
The average processing time is shown using the cross-correlation technique.

Experiment Time results (seconds)

Feature detectors combinations Descriptor
PNN SVM DNN FFNN MATCH

train test train test train test train test train test

MSER SURF 0.214 172.3 102.5 0.102 157.7 0.343 61.90 0.141 0.022 1.61

MSER + Harris SURF 0.105 747.9 498.2 0.110 306.5 0.644 118.7 0.258 0.028 3.87

MSER + FAST SURF 0.107 433.0 379.5 0.101 272.1 0.567 105.1 0.229 0.029 3.27

MSER + BRISK SURF 0.117 806.6 508.1 0.120 336.37 0.706 134.7 0.268 0.034 4.00

MSER + Harris + FAST + BRISK SURF 0.194 NA 1726.4 0.205 600.9 1.249 232.6 0.506 0.056 15.42

Table 4 shows the average time performance for training and testing stages
over the cross-validation technique using an Intel Xeon E5-1620 processor and
48GB of RAM. Dismissing PNN, which its architecture build the structure of the
classifier by simply adjusting some of its parameters during the training process
and the feature matching algorithm because we only measure the process of the
storage of the training feature descriptors, the best training time performance is
FFNN for all the experiments compared to SVM and DNN. It has 40% less time
in the training process in the worst case (with MSER and SVM). Although SVM
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does not have the best training time, it has the best time performance for the
testing stage. It has an average of 0.1276 seconds classifying features descriptors
of 200 images (an average of 0.638 milliseconds per image). Regardless of the
increment of features, it only increases approximately 202% of its testing time on
the worst case. DNN, FNN, and Feature matching increased their testing time
approximately 381%, 358%, and 957% respectively when the number of feature
detectors becomes larger.

4 Conclusions and Future Work

In this paper, we proposed a combination of feature detectors for feature descrip-
tor classification as a step of a top-down RGBD semantic segmentation method.
In the first experiment, local image features were used with four classification
algorithms: a Probabilistic Neural Network (PNN), a Support Vector Machine
(SVM), a Deep Neural Network (DNN), and a Feed Forward Neural Network
(FFNN). This showed that the combination of feature detectors could improve
performance on the classification of feature detectors on indoor environments.
In particular, mean accuracy over 13 classes could be improved up to 3.3% in
comparison to the FFNN implemented in [26]. This experiment showed that the
combination of feature detectors of Maximally Stable Extremal Region (MSER)
and Binary Robust Invariant Scalable Keypoints (BRISK) improved about 2.4%
of mean accuracy using DNN. Support Vector Machine improved its performance
by 2.1% using Maximally Stable Extremal Region and Features from Accelerated
Segment Test (FAST) detectors, also using the combination of the four detectors
(MSER + FAST + BRISK and Harris detector). Probabilistic Neural Network
was the only one that could not improve its performance using the combination
of feature detectors.

In the second experiment, the same four classification algorithms were com-
pared with a feature matching algorithm. A balanced dataset was defined along
with a cross-validation technique. It is showed that using MSER + BRISK
combination could improve the average value of the mean classification accuracy
by up to 5.5% using the FFNN implementation. The best performance was
obtained by PNN with 44.94%, while the worst case was the feature matching
algorithm with 5.11% using MSER + BRISK. However, taking into consideration
the time performances, SVM has the best time performance for testing data. It
takes 0.120 seconds for classifying features detectors of 200 images using the
MSER + BRISK combination, approximately 0.6 milliseconds per image with
the third best average value of mean classification accuracy of 43.98%. FFNN
obtained the best training time with 134.7 seconds and the second testing time
of 0.268 seconds with the second best result of 44.46% of the average value of
the mean accuracy.

In conclusion, it was observed with these experiments that the best com-
bination of feature detectors could not be defined for the first experiment.
Only the sum of all detectors obtained two best performances. However, the
second experiment showed that the MSER + BRISK was the best combination
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for the classification algorithms, except for the feature matching algorithm.
The explanation on the MSER + BRISK is that unlike the other detectors
(Harris and FAST), BRISK is invariant to rotation and scaling, so it is more
robust. SVM was the algorithm with the best average performance for all the
combinations of detectors in both experiments followed by DNN, FFNN, and
PNN. The structure of one versus other classes helped SVM to classify better the
feature descriptors. We noted that, in general, classification of feature descriptors
was not high. One reason could be the generalization problem of local image
features. It should be mentioned that we have tackled a part of the problem of
semantic segmentation from a specific environment (indoor scenes). Garcia et
al. [9] reported that the best result found for SUN RGBD Dataset was 48.10%
of mean Intersection-over-Union (mIoU) obtained by Z. Li et al.[17]. So, it is
still a challenging problem. As future work, we will analyze the generalization
problem in terms of the local image features by exploring several neural network
approaches. Furthermore, new combinations of feature detectors and feature
descriptors will be made to have a broader perspective on the improvement and
robustness of the proposed approach. Finally, this classification will be used for
the problem of the semantic segmentation process as it is shown in Figure 1.
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10. Gupta, S., Arbeláez, P., Girshick, R., Malik, J.: Indoor scene understanding with
rgb-d images: Bottom-up segmentation, object detection and semantic segmenta-
tion. International Journal of Computer Vision 112(2), 133–149 (2015)

45

A Local Image Feature Approach as a Step of a Top-Down RGBD Semantic Segmentation Method

Research in Computing Science 148(11), 2019ISSN 1870-4069
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